Microcavities: Difference between revisions
Elena & Fabrice's Web
Fabrice (talk | contribs)
mNo edit summary
Fabrice (talk | contribs)
Line 32: Line 32:


== Glossary ==
== Glossary ==
<templatestyles src="listyle.css" />
== §1 Overview of Microcavities ==
== §1 Overview of Microcavities ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Properties of microcavities
<ol class="counter-top" style="counter-reset: section 1;">
## Q-factor and finesse
  <li class="counter-item">Properties of microcavities
## Intracavity field enhancement and field distribution
    <ol class="counter-sublist">
## Tuneability and mode separation
      <li class="counter-subitem">Q-factor and finesse</li>
## Angular mode pattern
      <li class="counter-subitem">Intracavity field enhancement and field distribution</li>
## Low-threshold lasing
      <li class="counter-subitem">Tuneability and mode separation</li>
## Purcell factor and lifetimes
      <li class="counter-subitem">Angular mode pattern</li>
## Strong vs. weak coupling
      <li class="counter-subitem">Low-threshold lasing</li>
# Microcavity realizations
      <li class="counter-subitem">Purcell factor and lifetimes</li>
# Planar microcavities
      <li class="counter-subitem">Strong vs. weak coupling</li>
## Metal microcavities
    </ol>
## Dielectric Bragg mirrors
  </li>
# Spherical mirror microcavities
  <li class="counter-item">Microcavity realizations</li>
# Pillar microcavities
  <li class="counter-item">Planar microcavities
# Whispering-gallery modes
    <ol class="counter-sublist">
## Two-dimensional whispering galleries
      <li class="counter-subitem">Metal microcavities</li>
## Three-dimensional whispering-galleries
      <li class="counter-subitem">Dielectric Bragg mirrors</li>
# Photonic-crystal cavities
    </ol>
## Random lasers
  </li>
# Material systems
  <li class="counter-item">Spherical mirror microcavities</li>
## GaN microcavities
  <li class="counter-item">Pillar microcavities</li>
## ZnO microcavities
  <li class="counter-item">Whispering-gallery modes
## Organic microcavities
    <ol class="counter-sublist">
## Transition metal chalcogenides (TMCs)
      <li class="counter-subitem">Two-dimensional whispering galleries</li>
## Plasmonic nanocavities
      <li class="counter-subitem">Three-dimensional whispering-galleries</li>
# Microcavity lasers
    </ol>
# Conclusion
  </li>
  <li class="counter-item">Photonic-crystal cavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Random lasers</li>
    </ol>
  </li>
  <li class="counter-item">Material systems
    <ol class="counter-sublist">
      <li class="counter-subitem">GaN microcavities</li>
      <li class="counter-subitem">ZnO microcavities</li>
      <li class="counter-subitem">Organic microcavities</li>
      <li class="counter-subitem">Transition metal chalcogenides (TMCs)</li>
      <li class="counter-subitem">Plasmonic nanocavities</li>
    </ol>
  </li>
  <li class="counter-item">Microcavity lasers</li>
  <li class="counter-item">Conclusion</li>
</ol>
</div>
</div>


== §2 Classical description of light ==
== §2 Classical description of light ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Free space
<ol class="counter-top" style="counter-reset: section 2;">
## Light-field dynamics in free space
  <li class="counter-item">Free space
# Propagation in crystals
    <ol class="counter-sublist">
## Plane waves in bulk crystals
      <li class="counter-subitem">Light-field dynamics in free space</li>
## Absorption of light
    </ol>
## Kramers–Kronig relations
  </li>
# Coherence
  <li class="counter-item">Propagation in crystals
## Statistical properties of light
    <ol class="counter-sublist">
## Spatial and temporal coherence
      <li class="counter-subitem">Plane waves in bulk crystals</li>
## Wiener–Khinchin theorem
      <li class="counter-subitem">Absorption of light</li>
## Hanbury Brown–Twiss effect
      <li class="counter-subitem">Kramers–Kronig relations</li>
# Polarisation-dependent optical effects
    </ol>
## Birefringence
  </li>
## Magneto-optical effects
  <li class="counter-item">Coherence
# Propagation of light in multilayer planar structures
    <ol class="counter-sublist">
# Photonic eigenmodes of planar systems
      <li class="counter-subitem">Statistical properties of light</li>
## Photonic bands of 1D periodic structures
      <li class="counter-subitem">Spatial and temporal coherence</li>
# Planar microcavities
      <li class="counter-subitem">Wiener–Khinchin theorem</li>
# Tamm plasmons and photonic Tamm states
      <li class="counter-subitem">Hanbury Brown–Twiss effect</li>
# Stripes, pillars, and spheres: photonic wires and dots
    </ol>
## Cylinders and pillar cavities
  </li>
## Spheres
  <li class="counter-item">Polarisation-dependent optical effects
# Further reading
    <ol class="counter-sublist">
      <li class="counter-subitem">Birefringence</li>
      <li class="counter-subitem">Magneto-optical effects</li>
    </ol>
  </li>
  <li class="counter-item">Propagation of light in multilayer planar structures</li>
  <li class="counter-item">Photonic eigenmodes of planar systems
    <ol class="counter-sublist">
      <li class="counter-subitem">Photonic bands of 1D periodic structures</li>
    </ol>
  </li>
  <li class="counter-item">Planar microcavities</li>
  <li class="counter-item">Tamm plasmons and photonic Tamm states</li>
  <li class="counter-item">Stripes, pillars, and spheres: photonic wires and dots
    <ol class="counter-sublist">
      <li class="counter-subitem">Cylinders and pillar cavities</li>
      <li class="counter-subitem">Spheres</li>
    </ol>
  </li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>
== §3 Quantum description of light ==
== §3 Quantum description of light ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Pictures of quantum mechanics
<ol class="counter-top" style="counter-reset: section 3;">
## Historical background
  <li class="counter-item">Pictures of quantum mechanics
## Schrödinger picture
    <ol class="counter-sublist">
## Antisymmetry of the wavefunction
      <li class="counter-subitem">Historical background</li>
## Symmetry of the wavefunction
      <li class="counter-subitem">Schrödinger picture</li>
## Heisenberg picture
      <li class="counter-subitem">Antisymmetry of the wavefunction</li>
## Dirac (interaction) picture
      <li class="counter-subitem">Symmetry of the wavefunction</li>
# Other formulations
      <li class="counter-subitem">Heisenberg picture</li>
## Density matrix and Liouvillian
      <li class="counter-subitem">Dirac (interaction) picture</li>
## Second quantization
    </ol>
## Quantization of the light field
  </li>
# Quantum states
  <li class="counter-item">Other formulations
## Fock states
    <ol class="counter-sublist">
## Coherent states
      <li class="counter-subitem">Density matrix and Liouvillian</li>
## Glauber–Sudarshan representation
      <li class="counter-subitem">Second quantization</li>
## Thermal states
      <li class="counter-subitem">Quantization of the light field</li>
## Mixture states
    </ol>
## Power spectrum
  </li>
## g(2) and other Glauber correlators
  <li class="counter-item">Quantum states
## Polarisation
    <ol class="counter-sublist">
# Outlook on quantum mechanics for microcavities
      <li class="counter-subitem">Fock states</li>
# Further reading
      <li class="counter-subitem">Coherent states</li>
      <li class="counter-subitem">Glauber–Sudarshan representation</li>
      <li class="counter-subitem">Thermal states</li>
      <li class="counter-subitem">Mixture states</li>
      <li class="counter-subitem">Power spectrum</li>
      <li class="counter-subitem">g(2) and other Glauber correlators</li>
      <li class="counter-subitem">Polarisation</li>
    </ol>
  </li>
  <li class="counter-item">Outlook on quantum mechanics for microcavities</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>
== §4 Semiclassical description of light–matter coupling ==
== §4 Semiclassical description of light–matter coupling ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Light–matter interaction
<ol class="counter-top" style="counter-reset: section 4;">
## Classical limit
  <li class="counter-item">Light–matter interaction
## Einstein coefficients
    <ol class="counter-sublist">
# Optical transitions in semiconductors
      <li class="counter-subitem">Classical limit</li>
# Excitons in semiconductors
      <li class="counter-subitem">Einstein coefficients</li>
## Frenkel and Wannier–Mott excitons
    </ol>
## Excitons in confined systems
  </li>
## Quantum wells
  <li class="counter-item">Optical transitions in semiconductors</li>
## Quantum wires and dots
  <li class="counter-item">Excitons in semiconductors
# Exciton–photon coupling
    <ol class="counter-sublist">
## Surface polaritons
      <li class="counter-subitem">Frenkel and Wannier–Mott excitons</li>
## Exciton–photon coupling in quantum wells
      <li class="counter-subitem">Excitons in confined systems</li>
## Exciton–photon coupling in quantum wires and dots
      <li class="counter-subitem">Quantum wells</li>
## Dispersion of polaritons in planar microcavities
      <li class="counter-subitem">Quantum wires and dots</li>
## Motional narrowing of cavity polaritons
    </ol>
## Microcavities with quantum wires or dots
  </li>
  <li class="counter-item">Exciton–photon coupling
    <ol class="counter-sublist">
      <li class="counter-subitem">Surface polaritons</li>
      <li class="counter-subitem">Exciton–photon coupling in quantum wells</li>
      <li class="counter-subitem">Exciton–photon coupling in quantum wires and dots</li>
      <li class="counter-subitem">Dispersion of polaritons in planar microcavities</li>
      <li class="counter-subitem">Motional narrowing of cavity polaritons</li>
      <li class="counter-subitem">Microcavities with quantum wires or dots</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §5 Quantum description of light–matter coupling ==
== §5 Quantum description of light–matter coupling ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Historical background
<ol class="counter-top" style="counter-reset: section 5;">
# Rabi dynamics
  <li class="counter-item">Historical background</li>
# Bloch equations
  <li class="counter-item">Rabi dynamics</li>
# Full quantum picture
  <li class="counter-item">Bloch equations</li>
## Light–Matter interaction Hamiltonian
  <li class="counter-item">Full quantum picture
## Dressed bosons
    <ol class="counter-sublist">
## Josephson coupling
      <li class="counter-subitem">Light–Matter interaction Hamiltonian</li>
## Jaynes–Cummings model
      <li class="counter-subitem">Dressed bosons</li>
## Dicke model
      <li class="counter-subitem">Josephson coupling</li>
# Lindblad dissipation
      <li class="counter-subitem">Jaynes–Cummings model</li>
# Quantum dynamics with decay and pumping
      <li class="counter-subitem">Dicke model</li>
## Single-time dynamics of coupled Bose fields
    </ol>
## Two-time dynamics of coupled Bose fields
  </li>
## The two-level system coupled to a Bose field
  <li class="counter-item">Lindblad dissipation</li>
# Excitons in semiconductors
  <li class="counter-item">Quantum dynamics with decay and pumping
## Quantization of the exciton field
    <ol class="counter-sublist">
## Excitons as bosons
      <li class="counter-subitem">Single-time dynamics of coupled Bose fields</li>
## Excitons in quantum dots
      <li class="counter-subitem">Two-time dynamics of coupled Bose fields</li>
# Exciton–photon coupling
      <li class="counter-subitem">The two-level system coupled to a Bose field</li>
## Polariton splitting
    </ol>
## The polariton Hamiltonian
  </li>
  <li class="counter-item">Excitons in semiconductors
    <ol class="counter-sublist">
      <li class="counter-subitem">Quantization of the exciton field</li>
      <li class="counter-subitem">Excitons as bosons</li>
      <li class="counter-subitem">Excitons in quantum dots</li>
    </ol>
  </li>
  <li class="counter-item">Exciton–photon coupling
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton splitting</li>
      <li class="counter-subitem">The polariton Hamiltonian</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §6 Weak-coupling microcavities ==
== §6 Weak-coupling microcavities ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Purcell effect
<ol class="counter-top" style="counter-reset: section 6;">
## The physics of weak coupling
  <li class="counter-item">Purcell effect
## Spontaneous emission
    <ol class="counter-sublist">
## Quantum Dots, 2D excitons and 2D electron–hole pairs
      <li class="counter-subitem">The physics of weak coupling</li>
## Fermi’s golden rule
      <li class="counter-subitem">Spontaneous emission</li>
## Dynamics of the Purcell effect
      <li class="counter-subitem">Quantum Dots, 2D excitons and 2D electron–hole pairs</li>
## Experimental realizations
      <li class="counter-subitem">Fermi’s golden rule</li>
# Lasers
      <li class="counter-subitem">Dynamics of the Purcell effect</li>
## The physics of lasers
      <li class="counter-subitem">Experimental realizations</li>
## Semiconductors in laser physics
    </ol>
## Vertical-cavity surface-emitting lasers
  </li>
## Resonant-cavity LEDs
  <li class="counter-item">Lasers
## Quantum theory of the laser
    <ol class="counter-sublist">
# Nonlinear optical properties of weak-coupling microcavities
      <li class="counter-subitem">The physics of lasers</li>
## Bistability
      <li class="counter-subitem">Semiconductors in laser physics</li>
## Phase matching
      <li class="counter-subitem">Vertical-cavity surface-emitting lasers</li>
# Conclusion
      <li class="counter-subitem">Resonant-cavity LEDs</li>
      <li class="counter-subitem">Quantum theory of the laser</li>
    </ol>
  </li>
  <li class="counter-item">Nonlinear optical properties of weak-coupling microcavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Bistability</li>
      <li class="counter-subitem">Phase matching</li>
    </ol>
  </li>
  <li class="counter-item">Conclusion</li>
</ol>
</div>
</div>


== §7 Strong-coupling: resonant effects ==
== §7 Strong-coupling: resonant effects ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Optical properties: background
<ol class="counter-top" style="counter-reset: section 7;">
## Quantum well microcavities
  <li class="counter-item">Optical properties: background
## Variations on a theme
    <ol class="counter-sublist">
## Motional narrowing
      <li class="counter-subitem">Quantum well microcavities</li>
## Ultra-strong coupling in THz cavities
      <li class="counter-subitem">Variations on a theme</li>
## Polariton emission
      <li class="counter-subitem">Motional narrowing</li>
# Near-resonant-pumped optical nonlinearities
      <li class="counter-subitem">Ultra-strong coupling in THz cavities</li>
## Pulsed stimulated scattering
      <li class="counter-subitem">Polariton emission</li>
## Quasimode theory of parametric amplification
    </ol>
## Microcavity parametric oscillators
  </li>
# Resonant excitation case and parametric amplification
  <li class="counter-item">Near-resonant-pumped optical nonlinearities
## Semiclassical description
    <ol class="counter-sublist">
## Stationary solution and threshold
      <li class="counter-subitem">Pulsed stimulated scattering</li>
## Theoretical approach: quantum model
      <li class="counter-subitem">Quasimode theory of parametric amplification</li>
## Three-level model
      <li class="counter-subitem">Microcavity parametric oscillators</li>
## Threshold
    </ol>
# Two-beam experiment
  </li>
## One-beam experiment and spontaneous symmetry breaking
  <li class="counter-item">Resonant excitation case and parametric amplification
## Dressing of the dispersion induced by polariton condensates
    <ol class="counter-sublist">
## Bistable behaviour
      <li class="counter-subitem">Semiclassical description</li>
# Propagation of polaritons
      <li class="counter-subitem">Stationary solution and threshold</li>
## Polariton wavepackets
      <li class="counter-subitem">Theoretical approach: quantum model</li>
## Self-accelerating and self-interfering wavepackets
      <li class="counter-subitem">Three-level model</li>
## Superfluid propagation
      <li class="counter-subitem">Threshold</li>
## Elementary excitation of resonantly pumped polaritons
    </ol>
## Conventional and unconventional polariton superfluidity
  </li>
## High-density effects: the polariton backjet
  <li class="counter-item">Two-beam experiment
    <ol class="counter-sublist">
      <li class="counter-subitem">One-beam experiment and spontaneous symmetry breaking</li>
      <li class="counter-subitem">Dressing of the dispersion induced by polariton condensates</li>
      <li class="counter-subitem">Bistable behaviour</li>
    </ol>
  </li>
  <li class="counter-item">Propagation of polaritons
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton wavepackets</li>
      <li class="counter-subitem">Self-accelerating and self-interfering wavepackets</li>
      <li class="counter-subitem">Superfluid propagation</li>
      <li class="counter-subitem">Elementary excitation of resonantly pumped polaritons</li>
      <li class="counter-subitem">Conventional and unconventional polariton superfluidity</li>
      <li class="counter-subitem">High-density effects: the polariton backjet</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §8 Strong-coupling: polariton Bose condensation ==
== §8 Strong-coupling: polariton Bose condensation ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
#Introduction
<ol class="counter-top" style="counter-reset: section 8;">
# Basic ideas about Bose–Einstein condensation
  <li class="counter-item">Introduction</li>
## Einstein proposal
  <li class="counter-item">Basic ideas about Bose–Einstein condensation
## Experimental realization
    <ol class="counter-sublist">
## Modern definition of Bose–Einstein condensation
      <li class="counter-subitem">Einstein proposal</li>
# Specificities of excitons and polaritons
      <li class="counter-subitem">Experimental realization</li>
## Thermodynamic properties of cavity polaritons
      <li class="counter-subitem">Modern definition of Bose–Einstein condensation</li>
## Interacting bosons and Bogoliubov model
    </ol>
## Polariton superfluidity
  </li>
## Quasicondensation and local effects
  <li class="counter-item">Specificities of excitons and polaritons
# Kinetics of formation of polariton condensates: semiclassical picture
    <ol class="counter-sublist">
## Qualitative features
      <li class="counter-subitem">Thermodynamic properties of cavity polaritons</li>
## The semiclassical Boltzmann equation
      <li class="counter-subitem">Interacting bosons and Bogoliubov model</li>
## Numerical solution of Boltzmann equations, practical aspects
      <li class="counter-subitem">Polariton superfluidity</li>
## Effective scattering rates
      <li class="counter-subitem">Quasicondensation and local effects</li>
## From thermodynamic to kinetic regime
    </ol>
# Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
  </li>
## Density matrix dynamics of the ground-state
  <li class="counter-item">Kinetics of formation of polariton condensates: semiclassical picture
## Discussion
    <ol class="counter-sublist">
## Coherence dynamics
      <li class="counter-subitem">Qualitative features</li>
# Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
      <li class="counter-subitem">The semiclassical Boltzmann equation</li>
## Two-oscillator toy theory
      <li class="counter-subitem">Numerical solution of Boltzmann equations, practical aspects</li>
## Coherence of polariton laser emission
      <li class="counter-subitem">Effective scattering rates</li>
## Numerical simulations
      <li class="counter-subitem">From thermodynamic to kinetic regime</li>
## Order parameter and phase diffusion coefficient
    </ol>
# Spatial dynamics of polariton condensates
  </li>
## Gross–Pitaevskii equation
  <li class="counter-item">Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
## Modified Gross–Pitaevskii equations
    <ol class="counter-sublist">
## Bogolon dispersion
      <li class="counter-subitem">Density matrix dynamics of the ground-state</li>
## Spatial coherence. The thermal fluctuation effect
      <li class="counter-subitem">Discussion</li>
# Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
      <li class="counter-subitem">Coherence dynamics</li>
## Experimental observation
    </ol>
## Polariton lasing vs Bose–Einstein condensation
  </li>
## Polariton diodes
  <li class="counter-item">Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
## Experiments on superfluidity
    <ol class="counter-sublist">
# Polariton billiard
      <li class="counter-subitem">Two-oscillator toy theory</li>
# Superconductivity mediated by exciton-polaritons
      <li class="counter-subitem">Coherence of polariton laser emission</li>
# Further reading
      <li class="counter-subitem">Numerical simulations</li>
      <li class="counter-subitem">Order parameter and phase diffusion coefficient</li>
    </ol>
  </li>
  <li class="counter-item">Spatial dynamics of polariton condensates
    <ol class="counter-sublist">
      <li class="counter-subitem">Gross–Pitaevskii equation</li>
      <li class="counter-subitem">Modified Gross–Pitaevskii equations</li>
      <li class="counter-subitem">Bogolon dispersion</li>
      <li class="counter-subitem">Spatial coherence. The thermal fluctuation effect</li>
    </ol>
  </li>
  <li class="counter-item">Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
    <ol class="counter-sublist">
      <li class="counter-subitem">Experimental observation</li>
      <li class="counter-subitem">Polariton lasing vs Bose–Einstein condensation</li>
      <li class="counter-subitem">Polariton diodes</li>
      <li class="counter-subitem">Experiments on superfluidity</li>
    </ol>
  </li>
  <li class="counter-item">Polariton billiard</li>
  <li class="counter-item">Superconductivity mediated by exciton-polaritons</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §9 Spin and polarization ==
== §9 Spin and polarization ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Introduction
<ol class="counter-top" style="counter-reset: section 9;">
# Spin relaxation of electrons, holes and excitons in semiconductors
  <li class="counter-item">Introduction</li>
# Microcavities in the presence of a magnetic field
  <li class="counter-item">Spin relaxation of electrons, holes and excitons in semiconductors</li>
# Resonant Faraday rotation
  <li class="counter-item">Microcavities in the presence of a magnetic field</li>
# Spin relaxation of exciton-polaritons in microcavities: experiment
  <li class="counter-item">Resonant Faraday rotation</li>
# Spin relaxation of exciton-polaritons in microcavities: theory
  <li class="counter-item">Spin relaxation of exciton-polaritons in microcavities: experiment</li>
# Optical spin Hall effect
  <li class="counter-item">Spin relaxation of exciton-polaritons in microcavities: theory</li>
# Full Poincaré beams and polarisation shaping in microcavities
  <li class="counter-item">Optical spin Hall effect</li>
# Optically induced Faraday rotation
  <li class="counter-item">Full Poincaré beams and polarisation shaping in microcavities</li>
# Interplay between spin and energy relaxation of exciton-polaritons
  <li class="counter-item">Optically induced Faraday rotation</li>
# Polarisation of Bose condensates and polariton superfluids
  <li class="counter-item">Interplay between spin and energy relaxation of exciton-polaritons</li>
# Magnetic-field effect and superfluidity
  <li class="counter-item">Polarisation of Bose condensates and polariton superfluids</li>
# Finite-temperature case
  <li class="counter-item">Magnetic-field effect and superfluidity</li>
# Stationary states of spinor condensates
  <li class="counter-item">Finite-temperature case</li>
# Conclusions
  <li class="counter-item">Stationary states of spinor condensates</li>
# Further reading
  <li class="counter-item">Conclusions</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §10 Quantum fluids of light ==
== §10 Quantum fluids of light ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Introduction
<ol class="counter-top" style="counter-reset: section 10;">
# Topological excitations in quantum fluids of light
  <li class="counter-item">Introduction</li>
## Topological defects in scalar condensates
  <li class="counter-item">Topological excitations in quantum fluids of light
## Interaction with a static defect; superfluidity and topology
    <ol class="counter-sublist">
# Half-integer topological defects in spinor quantum fluids
      <li class="counter-subitem">Topological defects in scalar condensates</li>
## Introduction
      <li class="counter-subitem">Interaction with a static defect; superfluidity and topology</li>
## Half-vortices
    </ol>
## Half-solitons
  </li>
# Hydrodynamic generation of oblique half-solitons and half-vortices
  <li class="counter-item">Half-integer topological defects in spinor quantum fluids
# Spin Bifurcation Theory (Broken Parity)
    <ol class="counter-sublist">
## Paramagnetic solutions
      <li class="counter-subitem">Introduction</li>
## Ferromagnetic solutions
      <li class="counter-subitem">Half-vortices</li>
# Engineering of the polariton band structure
      <li class="counter-subitem">Half-solitons</li>
## Introduction
    </ol>
## Wire Cavities
  </li>
## Single Pillars and molecules
  <li class="counter-item">Hydrodynamic generation of oblique half-solitons and half-vortices</li>
## Lattices: A few basics about 1D lattices
  <li class="counter-item">Spin Bifurcation Theory (Broken Parity)
## Bright- and gap-solitons in 1D polariton systems
    <ol class="counter-sublist">
## Honeycomb lattice (scalar approximation)
      <li class="counter-subitem">Paramagnetic solutions</li>
## Honeycomb lattice (polarized)
      <li class="counter-subitem">Ferromagnetic solutions</li>
## Polariton topological insulators
    </ol>
# Further reading
  </li>
  <li class="counter-item">Engineering of the polariton band structure
    <ol class="counter-sublist">
      <li class="counter-subitem">Introduction</li>
      <li class="counter-subitem">Wire Cavities</li>
      <li class="counter-subitem">Single Pillars and molecules</li>
      <li class="counter-subitem">Lattices: A few basics about 1D lattices</li>
      <li class="counter-subitem">Bright- and gap-solitons in 1D polariton systems</li>
      <li class="counter-subitem">Honeycomb lattice (scalar approximation)</li>
      <li class="counter-subitem">Honeycomb lattice (polarized)</li>
      <li class="counter-subitem">Polariton topological insulators</li>
    </ol>
  </li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §11 Quantum polaritonics ==
== §11 Quantum polaritonics ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Microcavity QED
<ol class="counter-top" style="counter-reset: section 11;">
## Quantum vs classical polaritons
  <li class="counter-item">Microcavity QED
## Control of polariton Rabi oscillations
    <ol class="counter-sublist">
## Polariton squeezing
      <li class="counter-subitem">Quantum vs classical polaritons</li>
## Polariton statistics
      <li class="counter-subitem">Control of polariton Rabi oscillations</li>
## Polariton entanglement
      <li class="counter-subitem">Polariton squeezing</li>
# Polariton blockade
      <li class="counter-subitem">Polariton statistics</li>
## Jaynes–Cummings blockade
      <li class="counter-subitem">Polariton entanglement</li>
## Kerr blockade
    </ol>
## Unconventional blockade
  </li>
# Frequency-resolved photon correlations
  <li class="counter-item">Polariton blockade
## Photo-detection theory
    <ol class="counter-sublist">
## The sensor method
      <li class="counter-subitem">Jaynes–Cummings blockade</li>
## Two-photon spectra
      <li class="counter-subitem">Kerr blockade</li>
# N–photon emitters
      <li class="counter-subitem">Unconventional blockade</li>
## Super-Rabi oscillations
    </ol>
## Robust Jaynes–Cummings resonances
  </li>
## Bundles of photons
  <li class="counter-item">Frequency-resolved photon correlations
## Yudson representation
    <ol class="counter-sublist">
# Exciting with Quantum Light
      <li class="counter-subitem">Photo-detection theory</li>
## Cascaded formalism
      <li class="counter-subitem">The sensor method</li>
## Exciting simple targets
      <li class="counter-subitem">Two-photon spectra</li>
## Mollow spectroscopy
    </ol>
# Quantum Information Processing
  </li>
## Quantum Computation
  <li class="counter-item">N–photon emitters
## Limits of Quantum Computation
    <ol class="counter-sublist">
## Quantum Annealing
      <li class="counter-subitem">Super-Rabi oscillations</li>
## Polariton simulator
      <li class="counter-subitem">Robust Jaynes–Cummings resonances</li>
## Other paradigms
      <li class="counter-subitem">Bundles of photons</li>
# Future prospects and reading
      <li class="counter-subitem">Yudson representation</li>
    </ol>
  </li>
  <li class="counter-item">Exciting with Quantum Light
    <ol class="counter-sublist">
      <li class="counter-subitem">Cascaded formalism</li>
      <li class="counter-subitem">Exciting simple targets</li>
      <li class="counter-subitem">Mollow spectroscopy</li>
    </ol>
  </li>
  <li class="counter-item">Quantum Information Processing
    <ol class="counter-sublist">
      <li class="counter-subitem">Quantum Computation</li>
      <li class="counter-subitem">Limits of Quantum Computation</li>
      <li class="counter-subitem">Quantum Annealing</li>
      <li class="counter-subitem">Polariton simulator</li>
      <li class="counter-subitem">Other paradigms</li>
    </ol>
  </li>
  <li class="counter-item">Future prospects and reading</li>
</ol>
</div>
</div>


== §12 Polariton devices ==
== §12 Polariton devices ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Polariton lasers
<ol class="counter-top" style="counter-reset: section 12;">
## Concept of polariton lasing
  <li class="counter-item">Polariton lasers
## Realization of polariton lasers in semiconductor microcavities
    <ol class="counter-sublist">
# Polariton lasers with electrical injection
      <li class="counter-subitem">Concept of polariton lasing</li>
## Experimental manifestations
      <li class="counter-subitem">Realization of polariton lasers in semiconductor microcavities</li>
## Weak lasing
    </ol>
# Polariton terahertz lasers
  </li>
## Variety of proposals
  <li class="counter-item">Polariton lasers with electrical injection
## Polariton terahertz lasers with two-photon excitation
    <ol class="counter-sublist">
## Superradiant emission of terahertz radiation by dipolaritons
      <li class="counter-subitem">Experimental manifestations</li>
# Bosonic cascade lasers
      <li class="counter-subitem">Weak lasing</li>
## The Boltzmann dynamics of bosonic cascades
    </ol>
## Quantum model of a bosonic cascade laser
  </li>
# Spatial dynamics of polariton lasing structures
  <li class="counter-item">Polariton terahertz lasers
## Pattern formation
    <ol class="counter-sublist">
## Control of lasing modes in structured potentials
      <li class="counter-subitem">Variety of proposals</li>
## Bistability and polariton condensate memories
      <li class="counter-subitem">Polariton terahertz lasers with two-photon excitation</li>
## Polariton quantum random number generators
      <li class="counter-subitem">Superradiant emission of terahertz radiation by dipolaritons</li>
# Polariton condensate transistors and optical circuits
    </ol>
## Polariton transistors
  </li>
## Polariton neurons
  <li class="counter-item">Bosonic cascade lasers
# Conclusions
    <ol class="counter-sublist">
# Further reading
      <li class="counter-subitem">The Boltzmann dynamics of bosonic cascades</li>
      <li class="counter-subitem">Quantum model of a bosonic cascade laser</li>
    </ol>
  </li>
  <li class="counter-item">Spatial dynamics of polariton lasing structures
    <ol class="counter-sublist">
      <li class="counter-subitem">Pattern formation</li>
      <li class="counter-subitem">Control of lasing modes in structured potentials</li>
      <li class="counter-subitem">Bistability and polariton condensate memories</li>
      <li class="counter-subitem">Polariton quantum random number generators</li>
    </ol>
  </li>
  <li class="counter-item">Polariton condensate transistors and optical circuits
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton transistors</li>
      <li class="counter-subitem">Polariton neurons</li>
    </ol>
  </li>
  <li class="counter-item">Conclusions</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== A. Scattering rates of polariton relaxation ==
== A. Scattering rates of polariton relaxation ==

Revision as of 21:42, 15 July 2025

Versions

1st Edition

Published 20 December 20 (2007). [ISBN: 978-0191527968]

Revised Edition

Published 19 May (2011). [ISBN: 978-0199602278]

2nd Edition

Published 29 April (2017). [ISBN: 978-0191085864]

3rd Edition

In preparation.

TOC

Of the last (2nd) edition:

Glossary

§1 Overview of Microcavities

  1. Properties of microcavities
    1. Q-factor and finesse
    2. Intracavity field enhancement and field distribution
    3. Tuneability and mode separation
    4. Angular mode pattern
    5. Low-threshold lasing
    6. Purcell factor and lifetimes
    7. Strong vs. weak coupling
  2. Microcavity realizations
  3. Planar microcavities
    1. Metal microcavities
    2. Dielectric Bragg mirrors
  4. Spherical mirror microcavities
  5. Pillar microcavities
  6. Whispering-gallery modes
    1. Two-dimensional whispering galleries
    2. Three-dimensional whispering-galleries
  7. Photonic-crystal cavities
    1. Random lasers
  8. Material systems
    1. GaN microcavities
    2. ZnO microcavities
    3. Organic microcavities
    4. Transition metal chalcogenides (TMCs)
    5. Plasmonic nanocavities
  9. Microcavity lasers
  10. Conclusion

§2 Classical description of light

  1. Free space
    1. Light-field dynamics in free space
  2. Propagation in crystals
    1. Plane waves in bulk crystals
    2. Absorption of light
    3. Kramers–Kronig relations
  3. Coherence
    1. Statistical properties of light
    2. Spatial and temporal coherence
    3. Wiener–Khinchin theorem
    4. Hanbury Brown–Twiss effect
  4. Polarisation-dependent optical effects
    1. Birefringence
    2. Magneto-optical effects
  5. Propagation of light in multilayer planar structures
  6. Photonic eigenmodes of planar systems
    1. Photonic bands of 1D periodic structures
  7. Planar microcavities
  8. Tamm plasmons and photonic Tamm states
  9. Stripes, pillars, and spheres: photonic wires and dots
    1. Cylinders and pillar cavities
    2. Spheres
  10. Further reading

§3 Quantum description of light

  1. Pictures of quantum mechanics
    1. Historical background
    2. Schrödinger picture
    3. Antisymmetry of the wavefunction
    4. Symmetry of the wavefunction
    5. Heisenberg picture
    6. Dirac (interaction) picture
  2. Other formulations
    1. Density matrix and Liouvillian
    2. Second quantization
    3. Quantization of the light field
  3. Quantum states
    1. Fock states
    2. Coherent states
    3. Glauber–Sudarshan representation
    4. Thermal states
    5. Mixture states
    6. Power spectrum
    7. g(2) and other Glauber correlators
    8. Polarisation
  4. Outlook on quantum mechanics for microcavities
  5. Further reading

§4 Semiclassical description of light–matter coupling

  1. Light–matter interaction
    1. Classical limit
    2. Einstein coefficients
  2. Optical transitions in semiconductors
  3. Excitons in semiconductors
    1. Frenkel and Wannier–Mott excitons
    2. Excitons in confined systems
    3. Quantum wells
    4. Quantum wires and dots
  4. Exciton–photon coupling
    1. Surface polaritons
    2. Exciton–photon coupling in quantum wells
    3. Exciton–photon coupling in quantum wires and dots
    4. Dispersion of polaritons in planar microcavities
    5. Motional narrowing of cavity polaritons
    6. Microcavities with quantum wires or dots

§5 Quantum description of light–matter coupling

  1. Historical background
  2. Rabi dynamics
  3. Bloch equations
  4. Full quantum picture
    1. Light–Matter interaction Hamiltonian
    2. Dressed bosons
    3. Josephson coupling
    4. Jaynes–Cummings model
    5. Dicke model
  5. Lindblad dissipation
  6. Quantum dynamics with decay and pumping
    1. Single-time dynamics of coupled Bose fields
    2. Two-time dynamics of coupled Bose fields
    3. The two-level system coupled to a Bose field
  7. Excitons in semiconductors
    1. Quantization of the exciton field
    2. Excitons as bosons
    3. Excitons in quantum dots
  8. Exciton–photon coupling
    1. Polariton splitting
    2. The polariton Hamiltonian

§6 Weak-coupling microcavities

  1. Purcell effect
    1. The physics of weak coupling
    2. Spontaneous emission
    3. Quantum Dots, 2D excitons and 2D electron–hole pairs
    4. Fermi’s golden rule
    5. Dynamics of the Purcell effect
    6. Experimental realizations
  2. Lasers
    1. The physics of lasers
    2. Semiconductors in laser physics
    3. Vertical-cavity surface-emitting lasers
    4. Resonant-cavity LEDs
    5. Quantum theory of the laser
  3. Nonlinear optical properties of weak-coupling microcavities
    1. Bistability
    2. Phase matching
  4. Conclusion

§7 Strong-coupling: resonant effects

  1. Optical properties: background
    1. Quantum well microcavities
    2. Variations on a theme
    3. Motional narrowing
    4. Ultra-strong coupling in THz cavities
    5. Polariton emission
  2. Near-resonant-pumped optical nonlinearities
    1. Pulsed stimulated scattering
    2. Quasimode theory of parametric amplification
    3. Microcavity parametric oscillators
  3. Resonant excitation case and parametric amplification
    1. Semiclassical description
    2. Stationary solution and threshold
    3. Theoretical approach: quantum model
    4. Three-level model
    5. Threshold
  4. Two-beam experiment
    1. One-beam experiment and spontaneous symmetry breaking
    2. Dressing of the dispersion induced by polariton condensates
    3. Bistable behaviour
  5. Propagation of polaritons
    1. Polariton wavepackets
    2. Self-accelerating and self-interfering wavepackets
    3. Superfluid propagation
    4. Elementary excitation of resonantly pumped polaritons
    5. Conventional and unconventional polariton superfluidity
    6. High-density effects: the polariton backjet

§8 Strong-coupling: polariton Bose condensation

  1. Introduction
  2. Basic ideas about Bose–Einstein condensation
    1. Einstein proposal
    2. Experimental realization
    3. Modern definition of Bose–Einstein condensation
  3. Specificities of excitons and polaritons
    1. Thermodynamic properties of cavity polaritons
    2. Interacting bosons and Bogoliubov model
    3. Polariton superfluidity
    4. Quasicondensation and local effects
  4. Kinetics of formation of polariton condensates: semiclassical picture
    1. Qualitative features
    2. The semiclassical Boltzmann equation
    3. Numerical solution of Boltzmann equations, practical aspects
    4. Effective scattering rates
    5. From thermodynamic to kinetic regime
  5. Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
    1. Density matrix dynamics of the ground-state
    2. Discussion
    3. Coherence dynamics
  6. Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
    1. Two-oscillator toy theory
    2. Coherence of polariton laser emission
    3. Numerical simulations
    4. Order parameter and phase diffusion coefficient
  7. Spatial dynamics of polariton condensates
    1. Gross–Pitaevskii equation
    2. Modified Gross–Pitaevskii equations
    3. Bogolon dispersion
    4. Spatial coherence. The thermal fluctuation effect
  8. Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
    1. Experimental observation
    2. Polariton lasing vs Bose–Einstein condensation
    3. Polariton diodes
    4. Experiments on superfluidity
  9. Polariton billiard
  10. Superconductivity mediated by exciton-polaritons
  11. Further reading

§9 Spin and polarization

  1. Introduction
  2. Spin relaxation of electrons, holes and excitons in semiconductors
  3. Microcavities in the presence of a magnetic field
  4. Resonant Faraday rotation
  5. Spin relaxation of exciton-polaritons in microcavities: experiment
  6. Spin relaxation of exciton-polaritons in microcavities: theory
  7. Optical spin Hall effect
  8. Full Poincaré beams and polarisation shaping in microcavities
  9. Optically induced Faraday rotation
  10. Interplay between spin and energy relaxation of exciton-polaritons
  11. Polarisation of Bose condensates and polariton superfluids
  12. Magnetic-field effect and superfluidity
  13. Finite-temperature case
  14. Stationary states of spinor condensates
  15. Conclusions
  16. Further reading

§10 Quantum fluids of light

  1. Introduction
  2. Topological excitations in quantum fluids of light
    1. Topological defects in scalar condensates
    2. Interaction with a static defect; superfluidity and topology
  3. Half-integer topological defects in spinor quantum fluids
    1. Introduction
    2. Half-vortices
    3. Half-solitons
  4. Hydrodynamic generation of oblique half-solitons and half-vortices
  5. Spin Bifurcation Theory (Broken Parity)
    1. Paramagnetic solutions
    2. Ferromagnetic solutions
  6. Engineering of the polariton band structure
    1. Introduction
    2. Wire Cavities
    3. Single Pillars and molecules
    4. Lattices: A few basics about 1D lattices
    5. Bright- and gap-solitons in 1D polariton systems
    6. Honeycomb lattice (scalar approximation)
    7. Honeycomb lattice (polarized)
    8. Polariton topological insulators
  7. Further reading

§11 Quantum polaritonics

  1. Microcavity QED
    1. Quantum vs classical polaritons
    2. Control of polariton Rabi oscillations
    3. Polariton squeezing
    4. Polariton statistics
    5. Polariton entanglement
  2. Polariton blockade
    1. Jaynes–Cummings blockade
    2. Kerr blockade
    3. Unconventional blockade
  3. Frequency-resolved photon correlations
    1. Photo-detection theory
    2. The sensor method
    3. Two-photon spectra
  4. N–photon emitters
    1. Super-Rabi oscillations
    2. Robust Jaynes–Cummings resonances
    3. Bundles of photons
    4. Yudson representation
  5. Exciting with Quantum Light
    1. Cascaded formalism
    2. Exciting simple targets
    3. Mollow spectroscopy
  6. Quantum Information Processing
    1. Quantum Computation
    2. Limits of Quantum Computation
    3. Quantum Annealing
    4. Polariton simulator
    5. Other paradigms
  7. Future prospects and reading

§12 Polariton devices

  1. Polariton lasers
    1. Concept of polariton lasing
    2. Realization of polariton lasers in semiconductor microcavities
  2. Polariton lasers with electrical injection
    1. Experimental manifestations
    2. Weak lasing
  3. Polariton terahertz lasers
    1. Variety of proposals
    2. Polariton terahertz lasers with two-photon excitation
    3. Superradiant emission of terahertz radiation by dipolaritons
  4. Bosonic cascade lasers
    1. The Boltzmann dynamics of bosonic cascades
    2. Quantum model of a bosonic cascade laser
  5. Spatial dynamics of polariton lasing structures
    1. Pattern formation
    2. Control of lasing modes in structured potentials
    3. Bistability and polariton condensate memories
    4. Polariton quantum random number generators
  6. Polariton condensate transistors and optical circuits
    1. Polariton transistors
    2. Polariton neurons
  7. Conclusions
  8. Further reading


A. Scattering rates of polariton relaxation

B. Derivation of the Landau criterion of superfluidity and Landau formula

C. Landau quantization and renormalisation of Rabi splitting

Index

Authors

The monograph is written by Alexey Kavokin, Jeremy J. Baumberg, Guillaume Malpuech and Fabrice P. Laussy.

Errors & Errata

If you find errors in the book, please kindly write to us. You will be credited here.