Transient first-order interference of two independent thermal light beams. B. Bai, J. Liu, S. Zhang, Y. He, M. Le, W. Wang and Z. Xu in J. Opt. Soc. Am. B 33:643 (2016).
3. G. Magyar and L. Mandel, “Interference fringes produced by superposi- tion of two independent maser light beams,” Nature 198, 255–256 (1963). 4. M. S. Lipsett and L. Mandel, “Coherence time measurement of light from a ruby optical maser,” Nature 199, 553–555 (1963).
Magyar and Mandel observed a spatial transient first-order interference pattern by superposing two independent ruby laser light beams [3]. A transient first-order interference pattern is the first-order interference pattern obtained in a short time interval, which is usually shorter than the coherence time of the field.
5. R. L. Pfleegor and L. Mandel, “Interference of independent photon beams,” Phys. Rev. 159, 1084–1088 (1967).
7. H. D. Cohen and U. Fano, “Interference in the photo-ionization of mol-
ecules,” Phys. Rev. 150, 30–33 (1966).
8. P. Grangier, A. Aspect, and J. Vigue, “Quantum interference effect for
two atoms radiating a single atom,” Phys. Rev. Lett. 54, 418–421 (1985).
9. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of
macroscopic light fields from independent Raman sources,” Phys.
Rev. A 43, 4083–4086 (1991).
10. U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, W. M.
Itano, D. J. Wineland, and M. G. Raizen, “Young’s interference
experiment with light scattered from two atoms,” Phys. Rev. Lett.
70, 2359–2362 (1993).
11. M. Afzelius, M. U. Staudt, H. de Riedmatten, C. Simon, S. R. Hastings-
Simon, R. Ricken, H. Suche, W. Sohler, and N. Gisin, “Interference
of spontaneous emission of light from two solid-state atomic ensem-
bles,” New J. Phys. 9, 413 (2007).
L. Mandel, “Quantum theory of interference effects produced by independent light beams,” Phys. Rev. 134, A10–A15 (1964).
Most physicists attribute
transient first-order interference of two independent
thermal light beams has never been reported to the degeneracy parameter of thermal light as usually much less than one [12,13]
the paper claims that it is impossible to observe the
transient first-order interference pattern by superposing two inde-
pendent thermal light beams even if the degeneracy parameter of thermal light is much greater than one. The degeneracy parameter of light, often discussed in the context of photon statistics, refers to the average number of photons per mode in a given electromagnetic field
Differences between Eqs. (3) & (4)
If the phase of ther- mal light field changes rapidly over 0 and 2π during the mea- surement time, there will be no transient first-order interference pattern by superposing two independent thermal light beams.
26. Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and J. Dalibard, “Interference of an array of independent Bose-Einstein condensates,” Phys. Rev. Lett. 93, 180403 (2004). 27. S. Ashhab, “Interference between a large number of independent Bose-Einstein condensates,” Phys. Rev. A 71, 063602 (2005). 28. G. Cennini, C. Geckeler, G. Ritt, and M. Weitz, “Interference of a variable number of coherent atomic sources,” Phys. Rev. A 72, 051601 (2005).
==
A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. G. Liu, D. W. Snoke, A. Daley, L. N. Pfeiffer and K. West in Proc. Natl. Acad. Sci. 112:2676 (2015).
6. H. Paul, “Interference between independent photons,” Rev. Mod. Phys. 58, 209–231 (1986).
J. B. Liu, Y. Zhou, W. T. Wang, R. F. Liu, K. He, F. L. Li, and Z. Xu, “Spatial second-order interference of
pseudothermal light in a Hong-Ou-Mandel interferometer,” Opt. Express 16, 19209–19218 (2013).